一篇文章搞懂人工智能、机器学习和深度学习之间的区别

概述

2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源。这两年在不管在国内还是在国外,人工智能、机器学习仿佛一夜之前传遍大街小巷。机器学习作为人工智能的一种类型,可以让软件根据大量的数据来对未来的情况进行阐述或预判。如今,领先的科技巨头无不在机器学习下予以极大投入。Facebook、苹果、微软,甚至国内的百度,Google 自然也在其中。

去年早些时候 Google DeepMind 的 AlphaGo 项目在举世瞩目的围棋比赛中一举击败了韩国选手李世石,媒体就是使用了人工智能、机器学习和深度学习这几个术语,来解释 DeepMind 获胜的原因,并将它们混为一谈。但是三者其实不是一回事。

区别与联系

本文借助Michael Copeland的讲解,让我们撩开人工智能、机器学习和深度学习的概念,深入理解它们的关系和区别。为了搞清三者关系,我们来看一张图:
这里写图片描述

如图所示:人工智能最大,此概念也最先问世;然后是机器学习,出现的稍晚;最后才是深度学习。
在之前的文章机器学习的发展历程 一文中,我们详细的介绍了机器学习的发展历史。

从低潮到繁荣

自从 1956 年计算机科学家们在达特茅斯会议(Dartmouth Conferences)上确认人工智能这个术语以来,人们就不乏关于人工智能奇思妙想,研究人员也在不遗余力地研究。在此后的几十年间,人工智能先是被捧为人类文明光明未来的钥匙,后又被当作过于自大的异想天开而抛弃。

但是在过去几年中,人工智能出现了爆炸式的发展,尤其是 2015 年之后。大部分原因,要归功于图形处理器(GPU)的广泛应用,使得并行处理更快、更便宜、更强大。另外,人工智能的发展还得益于几乎无限的存储空间和海量数据的出现(大数据运动):图像、文本、交易数据、地图数据,应有尽有。

下面我们从发展的历程中来一一展开对人工智能、机器学习和深度学习的深度学习。

人工智能

这里写图片描述

人工智能先驱们在达特茅斯开会时,心中的梦想是希望通过当时新兴的计算机,打造拥有相当于人类智能的复杂机器。这就是我们所说的“通用人工智能”(General AI)概念,拥有人类五感(甚至更多)、推理能力以及人类思维方式的神奇机器。在电影中我们已经看过无数这样的机器人,对人类友好的 C-3PO,以及人类的敌人终结者。通用人工智能机器至今只存在 于电影和科幻小说里,理由很简单:我们还实现不了,至少目前为止。

我们力所能及的,算是“弱人工智能”(Narrow AI):执行特定任务的水平与人类相当,甚至超越人类的技术。现实中有很多弱人工智能的例子。这些技术有人类智能的一面。但是它们是如何做到的?智能来自哪里?这就涉及到下一个同心圆:机器学习。

机器学习

这里写图片描述

机器学习是实现人工智能的一种方法。机器学习的概念来自早期的人工智能研究者,已经研究出的算法包括决策树学习、归纳逻辑编程、增强学习和贝叶斯网络等。简单来说,机器学习就是使用算法分析数据,从中学习并做出推断或预测。与传统的使用特定指令集手写软件不同,我们使用大量数据和算法来“训练”机器,由此带来机器学习如何完成任务。

许多年来,计算机视觉一直是机器学习最佳的领用领域之一,尽管还需要大量的手动编码才能完成任务。研究者会手动编写一些分类器(classifier),如边缘检测筛选器,帮助程序辨别物体的边界;图形检测分类器,判断物体是否有八个面;以及识别“S-T-O-P”的分类器。在这些手动编写的分类器的基础上,他们再开发用于理解图像的算法,并学习如何判断是否有停止标志。

但是由于计算机视觉和图像检测技术的滞后,经常容易出错。

深度学习

这里写图片描述

深度学习是实现机器学习的一种技术。早期机器学习研究者中还开发了一种叫人工神经网络的算法,但是发明之后数十年都默默无闻。神经网络是受人类大脑的启发而来的:神经元之间的相互连接关系。但是,人类大脑中的神经元可以与特定范围内的任意神经元连接,而人工神经网络中数据传播要经历不同的层,传播方向也不同。

举个例子,你可以将一张图片切分为小块,然后输入到神经网络的第一层中。在第一层中做初步计算,然后神经元将数据传至第二层。由第二层神经元执行任务,依次类推,直到最后一层,然后输出最终的结果。

每个神经元都会给其输入指定一个权重:相对于执行的任务该神经元的正确和错误程度。最终的输出由这些权重共同决定。因此,我们再来看看上面提到的停止标志示例。一张停止标志图像的属性,被一一细分,然后被神经元“检查”:形状、颜色、字符、标志大小和是否运动。神经网络的任务是判断这是否是一个停止标志。它将给出一个“概率向量”(probability vector),这其实是基于权重做出的猜测结果。在本文的示例中,系统可能会有 86% 的把握认定图像是一个停止标志,7% 的把握认为是一个限速标志,等等。网络架构然后会告知神经网络其判断是否正确。
不过,问题在于即使是最基础的神经网络也要耗费巨大的计算资源,因此当时不算是一个可行的方法。不过,以多伦多大学 Geoffrey Hinton 教授为首的一小批狂热研究者们坚持采用这种方法,最终让超级计算机能够并行执行该算法,并证明该算法的作用。如果我们回到停止标志那个例子,很有可能神经网络受训练的影响,会经常给出错误的答案。这说明还需要不断的训练。它需要成千上万张图片,甚至数百万张图片来训练,直到神经元输入的权重调整到非常精确,几乎每次都能够给出正确答案。不过值得庆幸的是Facebook 利用神经网络记住了你母亲的面孔;吴恩达 2012 年在谷歌实现了可以识别猫的神经网络。

如今,在某些情况下,通过深度学习训练过的机器在图像识别上表现优于人类,这包括找猫、识别血液中的癌症迹象等。谷歌的 AlphaGo 学会了围棋,并为比赛进行了大量的训练:不断的和自己比赛。

总结

人工智能的根本在于智能,而机器学习则是部署支持人工智能的计算方法。简单的将,人工智能是科学,机器学习是让机器变得更加智能的算法,机器学习在某种程度上成就了人工智能。

xiangzhihong8 CSDN认证博客专家 HTTPS 前端框架 JavaScript
著有《React Native移动开发实战》、《Kotlin入门与实战》、《Weex跨平台开发与实战》、《React Native开发进阶》和《Flutter跨平台开发实战》,正努力完成《Android应用架构实战》
已标记关键词 清除标记
相关推荐
<p> 学习人工智能机器学习都离不开数学基础和编程知识。 </p> <p> <br /> </p> <p> 无论你是数据科学的初学者还是已经从事人工智能开发的有经验人员,这门课都适合于你。<br /> 为什么这么说?首先人工智能机器学习本质上就是算法,而算法就是数学及统计学以及编程的结合。当前市场上有许多开源的软件包如SKLEARN确实可以帮助没经验的或缺乏数学或算法基础的人实现机器学习模型及预测,但这些工具无法使你真正懂得算法的本质或来源,或者无法使你在不同场合下灵活运用及改进算法。记住,在实际工作中找到适合应用场景的解决方案是最难但是最重要的。但这离不开数学基础和算法理解。 </p> <p> 比如,线性回归是一类普遍的机器学习算法,所有的机器学习软件都有现成的方法实现模型,但如果在训练数据中加入几条新数据,那么新建立的模型和原来的模型有和联系或不同?再比如,为什么深度神经网络中的Sigmoid函数一般只用到输出层?神经网络的向后传播理论如何与泰勒展开和复合函数的偏导数联系在一起?人工智能中推荐系统和文字向量如何与矩阵的奇异分解以及特征向量联系?模型中对标签进行数据变换如何影响预测值?所有这些问题的答案,你都可以从本课中找到线索。 </p> <p> <br /> </p> <p> 本课系统地讲述了有关人工智能机器学习背后的数学知识。特别指出,微积分和代数知识是本课的核心。统计学基础被安排在另外的课程中。除此之外,我在每一章节或主要知识点后都安排了各类程序以解释和回顾所学到的东西。<br /> 最后要提到的是,这不是一门工程项目实践课。但我会另外专门安排有关人工智能机器学习的实践课程 </p>
<p> </p><p> 数据科学是一门内涵很广的学科,它涉及到统计分析、机器学习以及计算机科学三方面的知识和技能。本课程将深入浅出、全面系统地介绍了这门学科的内容。通过这门课程,同学可以了解并熟悉如下的开源工具:scikit-learn、statsmodels、TensorFlow、Pyspark等。 </p> <p> 本课程分为4个部分,18个章节。 </p> <p> ·             第一部分是最初的3章,主要介绍数据科学想要解决的问题、常用的IT工具Python以及这门学科所涉及的数学基础。 </p> <p> ·             第二部分是第4-7章,主要讨论数据模型,主要包含三方面的内容:一是统计中最经典的线性回归和逻辑回归模型;二是计算机估算模型参数的随机梯度下降法,这是模型工程实现的基础;三是来自计量经济学的启示,主要涉及特征提取的方法以及模型的稳定性。 </p> <p> ·             第三部分是接下来的8-15章,主要讨论算法模型,也就是机器学习领域比较经典的模型。这三章依次讨论了监督式学习、生成式模型以及非监督式学习。 </p> <p> ·             第四部分将覆盖目前数据科学最前沿的两个领域分别是大数据和人工智能。具体来说,第11章将介绍大数据中很重要的分布式机器学习,而最后两章将讨论人工智能领域的神经网络和深度学习。 </p>
©️2020 CSDN 皮肤主题: 成长之路 设计师:Amelia_0503 返回首页
实付 19.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值